X7ROOT File Manager
Current Path:
/usr/include/c++/8/bits
usr
/
include
/
c++
/
8
/
bits
/
📁
..
📄
algorithmfwd.h
(21.23 KB)
📄
alloc_traits.h
(19.6 KB)
📄
allocated_ptr.h
(3.22 KB)
📄
allocator.h
(7.39 KB)
📄
atomic_base.h
(23.28 KB)
📄
atomic_futex.h
(9.35 KB)
📄
atomic_lockfree_defines.h
(2.2 KB)
📄
basic_ios.h
(15.7 KB)
📄
basic_ios.tcc
(5.94 KB)
📄
basic_string.h
(237.01 KB)
📄
basic_string.tcc
(52.5 KB)
📄
boost_concept_check.h
(26.52 KB)
📄
c++0x_warning.h
(1.44 KB)
📄
char_traits.h
(20.42 KB)
📄
codecvt.h
(20.79 KB)
📄
concept_check.h
(3.34 KB)
📄
cpp_type_traits.h
(9.56 KB)
📄
cxxabi_forced.h
(1.77 KB)
📄
cxxabi_init_exception.h
(2.17 KB)
📄
deque.tcc
(33.32 KB)
📄
enable_special_members.h
(12.1 KB)
📄
exception.h
(2.23 KB)
📄
exception_defines.h
(1.61 KB)
📄
exception_ptr.h
(5.84 KB)
📄
forward_list.h
(47.77 KB)
📄
forward_list.tcc
(12.86 KB)
📄
fs_dir.h
(14.38 KB)
📄
fs_fwd.h
(10.04 KB)
📄
fs_ops.h
(9.5 KB)
📄
fs_path.h
(32.12 KB)
📄
fstream.tcc
(32.03 KB)
📄
functexcept.h
(3.18 KB)
📄
functional_hash.h
(8.04 KB)
📄
gslice.h
(5.39 KB)
📄
gslice_array.h
(7.59 KB)
📄
hash_bytes.h
(2.1 KB)
📄
hashtable.h
(72.06 KB)
📄
hashtable_policy.h
(66.38 KB)
📄
indirect_array.h
(7.68 KB)
📄
invoke.h
(3.57 KB)
📄
ios_base.h
(30.3 KB)
📄
istream.tcc
(30.36 KB)
📄
list.tcc
(15.6 KB)
📄
locale_classes.h
(24.31 KB)
📄
locale_classes.tcc
(8.18 KB)
📄
locale_conv.h
(15.72 KB)
📄
locale_facets.h
(90.16 KB)
📄
locale_facets.tcc
(38.62 KB)
📄
locale_facets_nonio.h
(67.36 KB)
📄
locale_facets_nonio.tcc
(44.22 KB)
📄
localefwd.h
(5.51 KB)
📄
mask_array.h
(7.42 KB)
📄
memoryfwd.h
(2.4 KB)
📄
move.h
(6.38 KB)
📄
nested_exception.h
(4.69 KB)
📄
node_handle.h
(8.02 KB)
📄
ostream.tcc
(12.03 KB)
📄
ostream_insert.h
(3.91 KB)
📄
parse_numbers.h
(7.76 KB)
📄
postypes.h
(8.02 KB)
📄
predefined_ops.h
(8.87 KB)
📄
ptr_traits.h
(6.47 KB)
📄
quoted_string.h
(4.93 KB)
📄
random.h
(171.14 KB)
📄
random.tcc
(103.12 KB)
📄
range_access.h
(9.79 KB)
📄
refwrap.h
(11.61 KB)
📄
regex.h
(95.12 KB)
📄
regex.tcc
(16.18 KB)
📄
regex_automaton.h
(10.47 KB)
📄
regex_automaton.tcc
(7.65 KB)
📄
regex_compiler.h
(17.63 KB)
📄
regex_compiler.tcc
(18.84 KB)
📄
regex_constants.h
(14.36 KB)
📄
regex_error.h
(4.79 KB)
📄
regex_executor.h
(7.31 KB)
📄
regex_executor.tcc
(18.4 KB)
📄
regex_scanner.h
(6.92 KB)
📄
regex_scanner.tcc
(14.66 KB)
📄
shared_ptr.h
(22.88 KB)
📄
shared_ptr_atomic.h
(9.54 KB)
📄
shared_ptr_base.h
(53.01 KB)
📄
slice_array.h
(9.13 KB)
📄
specfun.h
(45.95 KB)
📄
sstream.tcc
(9.9 KB)
📄
std_abs.h
(3.19 KB)
📄
std_function.h
(22.71 KB)
📄
std_mutex.h
(9.08 KB)
📄
stl_algo.h
(209.27 KB)
📄
stl_algobase.h
(49.31 KB)
📄
stl_bvector.h
(32.94 KB)
📄
stl_construct.h
(7.22 KB)
📄
stl_deque.h
(76.73 KB)
📄
stl_function.h
(40.77 KB)
📄
stl_heap.h
(19.73 KB)
📄
stl_iterator.h
(41.3 KB)
📄
stl_iterator_base_funcs.h
(7.99 KB)
📄
stl_iterator_base_types.h
(8.48 KB)
📄
stl_list.h
(65.97 KB)
📄
stl_map.h
(51.55 KB)
📄
stl_multimap.h
(40.58 KB)
📄
stl_multiset.h
(34.97 KB)
📄
stl_numeric.h
(13.51 KB)
📄
stl_pair.h
(18.21 KB)
📄
stl_queue.h
(23.51 KB)
📄
stl_raw_storage_iter.h
(3.74 KB)
📄
stl_relops.h
(4.49 KB)
📄
stl_set.h
(35.28 KB)
📄
stl_stack.h
(11.66 KB)
📄
stl_tempbuf.h
(8.15 KB)
📄
stl_tree.h
(73.15 KB)
📄
stl_uninitialized.h
(27.06 KB)
📄
stl_vector.h
(59.12 KB)
📄
stream_iterator.h
(6.5 KB)
📄
streambuf.tcc
(4.81 KB)
📄
streambuf_iterator.h
(13.44 KB)
📄
string_view.tcc
(6.54 KB)
📄
stringfwd.h
(2.55 KB)
📄
uniform_int_dist.h
(9.84 KB)
📄
unique_ptr.h
(25.38 KB)
📄
unordered_map.h
(73.58 KB)
📄
unordered_set.h
(57.76 KB)
📄
uses_allocator.h
(6.37 KB)
📄
valarray_after.h
(22.12 KB)
📄
valarray_array.h
(21.3 KB)
📄
valarray_array.tcc
(7.08 KB)
📄
valarray_before.h
(18.08 KB)
📄
vector.tcc
(28.95 KB)
Editing: stl_function.h
// Functor implementations -*- C++ -*- // Copyright (C) 2001-2018 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 3, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // Under Section 7 of GPL version 3, you are granted additional // permissions described in the GCC Runtime Library Exception, version // 3.1, as published by the Free Software Foundation. // You should have received a copy of the GNU General Public License and // a copy of the GCC Runtime Library Exception along with this program; // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see // <http://www.gnu.org/licenses/>. /* * * Copyright (c) 1994 * Hewlett-Packard Company * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Hewlett-Packard Company makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. * * * Copyright (c) 1996-1998 * Silicon Graphics Computer Systems, Inc. * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Silicon Graphics makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. */ /** @file bits/stl_function.h * This is an internal header file, included by other library headers. * Do not attempt to use it directly. @headername{functional} */ #ifndef _STL_FUNCTION_H #define _STL_FUNCTION_H 1 #if __cplusplus > 201103L #include <bits/move.h> #endif namespace std _GLIBCXX_VISIBILITY(default) { _GLIBCXX_BEGIN_NAMESPACE_VERSION // 20.3.1 base classes /** @defgroup functors Function Objects * @ingroup utilities * * Function objects, or @e functors, are objects with an @c operator() * defined and accessible. They can be passed as arguments to algorithm * templates and used in place of a function pointer. Not only is the * resulting expressiveness of the library increased, but the generated * code can be more efficient than what you might write by hand. When we * refer to @a functors, then, generally we include function pointers in * the description as well. * * Often, functors are only created as temporaries passed to algorithm * calls, rather than being created as named variables. * * Two examples taken from the standard itself follow. To perform a * by-element addition of two vectors @c a and @c b containing @c double, * and put the result in @c a, use * \code * transform (a.begin(), a.end(), b.begin(), a.begin(), plus<double>()); * \endcode * To negate every element in @c a, use * \code * transform(a.begin(), a.end(), a.begin(), negate<double>()); * \endcode * The addition and negation functions will be inlined directly. * * The standard functors are derived from structs named @c unary_function * and @c binary_function. These two classes contain nothing but typedefs, * to aid in generic (template) programming. If you write your own * functors, you might consider doing the same. * * @{ */ /** * This is one of the @link functors functor base classes@endlink. */ template<typename _Arg, typename _Result> struct unary_function { /// @c argument_type is the type of the argument typedef _Arg argument_type; /// @c result_type is the return type typedef _Result result_type; }; /** * This is one of the @link functors functor base classes@endlink. */ template<typename _Arg1, typename _Arg2, typename _Result> struct binary_function { /// @c first_argument_type is the type of the first argument typedef _Arg1 first_argument_type; /// @c second_argument_type is the type of the second argument typedef _Arg2 second_argument_type; /// @c result_type is the return type typedef _Result result_type; }; /** @} */ // 20.3.2 arithmetic /** @defgroup arithmetic_functors Arithmetic Classes * @ingroup functors * * Because basic math often needs to be done during an algorithm, * the library provides functors for those operations. See the * documentation for @link functors the base classes@endlink * for examples of their use. * * @{ */ #if __cplusplus > 201103L struct __is_transparent; // undefined template<typename _Tp = void> struct plus; template<typename _Tp = void> struct minus; template<typename _Tp = void> struct multiplies; template<typename _Tp = void> struct divides; template<typename _Tp = void> struct modulus; template<typename _Tp = void> struct negate; #endif /// One of the @link arithmetic_functors math functors@endlink. template<typename _Tp> struct plus : public binary_function<_Tp, _Tp, _Tp> { _GLIBCXX14_CONSTEXPR _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x + __y; } }; /// One of the @link arithmetic_functors math functors@endlink. template<typename _Tp> struct minus : public binary_function<_Tp, _Tp, _Tp> { _GLIBCXX14_CONSTEXPR _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x - __y; } }; /// One of the @link arithmetic_functors math functors@endlink. template<typename _Tp> struct multiplies : public binary_function<_Tp, _Tp, _Tp> { _GLIBCXX14_CONSTEXPR _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x * __y; } }; /// One of the @link arithmetic_functors math functors@endlink. template<typename _Tp> struct divides : public binary_function<_Tp, _Tp, _Tp> { _GLIBCXX14_CONSTEXPR _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x / __y; } }; /// One of the @link arithmetic_functors math functors@endlink. template<typename _Tp> struct modulus : public binary_function<_Tp, _Tp, _Tp> { _GLIBCXX14_CONSTEXPR _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x % __y; } }; /// One of the @link arithmetic_functors math functors@endlink. template<typename _Tp> struct negate : public unary_function<_Tp, _Tp> { _GLIBCXX14_CONSTEXPR _Tp operator()(const _Tp& __x) const { return -__x; } }; #if __cplusplus > 201103L #define __cpp_lib_transparent_operators 201510 template<> struct plus<void> { template <typename _Tp, typename _Up> _GLIBCXX14_CONSTEXPR auto operator()(_Tp&& __t, _Up&& __u) const noexcept(noexcept(std::forward<_Tp>(__t) + std::forward<_Up>(__u))) -> decltype(std::forward<_Tp>(__t) + std::forward<_Up>(__u)) { return std::forward<_Tp>(__t) + std::forward<_Up>(__u); } typedef __is_transparent is_transparent; }; /// One of the @link arithmetic_functors math functors@endlink. template<> struct minus<void> { template <typename _Tp, typename _Up> _GLIBCXX14_CONSTEXPR auto operator()(_Tp&& __t, _Up&& __u) const noexcept(noexcept(std::forward<_Tp>(__t) - std::forward<_Up>(__u))) -> decltype(std::forward<_Tp>(__t) - std::forward<_Up>(__u)) { return std::forward<_Tp>(__t) - std::forward<_Up>(__u); } typedef __is_transparent is_transparent; }; /// One of the @link arithmetic_functors math functors@endlink. template<> struct multiplies<void> { template <typename _Tp, typename _Up> _GLIBCXX14_CONSTEXPR auto operator()(_Tp&& __t, _Up&& __u) const noexcept(noexcept(std::forward<_Tp>(__t) * std::forward<_Up>(__u))) -> decltype(std::forward<_Tp>(__t) * std::forward<_Up>(__u)) { return std::forward<_Tp>(__t) * std::forward<_Up>(__u); } typedef __is_transparent is_transparent; }; /// One of the @link arithmetic_functors math functors@endlink. template<> struct divides<void> { template <typename _Tp, typename _Up> _GLIBCXX14_CONSTEXPR auto operator()(_Tp&& __t, _Up&& __u) const noexcept(noexcept(std::forward<_Tp>(__t) / std::forward<_Up>(__u))) -> decltype(std::forward<_Tp>(__t) / std::forward<_Up>(__u)) { return std::forward<_Tp>(__t) / std::forward<_Up>(__u); } typedef __is_transparent is_transparent; }; /// One of the @link arithmetic_functors math functors@endlink. template<> struct modulus<void> { template <typename _Tp, typename _Up> _GLIBCXX14_CONSTEXPR auto operator()(_Tp&& __t, _Up&& __u) const noexcept(noexcept(std::forward<_Tp>(__t) % std::forward<_Up>(__u))) -> decltype(std::forward<_Tp>(__t) % std::forward<_Up>(__u)) { return std::forward<_Tp>(__t) % std::forward<_Up>(__u); } typedef __is_transparent is_transparent; }; /// One of the @link arithmetic_functors math functors@endlink. template<> struct negate<void> { template <typename _Tp> _GLIBCXX14_CONSTEXPR auto operator()(_Tp&& __t) const noexcept(noexcept(-std::forward<_Tp>(__t))) -> decltype(-std::forward<_Tp>(__t)) { return -std::forward<_Tp>(__t); } typedef __is_transparent is_transparent; }; #endif /** @} */ // 20.3.3 comparisons /** @defgroup comparison_functors Comparison Classes * @ingroup functors * * The library provides six wrapper functors for all the basic comparisons * in C++, like @c <. * * @{ */ #if __cplusplus > 201103L template<typename _Tp = void> struct equal_to; template<typename _Tp = void> struct not_equal_to; template<typename _Tp = void> struct greater; template<typename _Tp = void> struct less; template<typename _Tp = void> struct greater_equal; template<typename _Tp = void> struct less_equal; #endif /// One of the @link comparison_functors comparison functors@endlink. template<typename _Tp> struct equal_to : public binary_function<_Tp, _Tp, bool> { _GLIBCXX14_CONSTEXPR bool operator()(const _Tp& __x, const _Tp& __y) const { return __x == __y; } }; /// One of the @link comparison_functors comparison functors@endlink. template<typename _Tp> struct not_equal_to : public binary_function<_Tp, _Tp, bool> { _GLIBCXX14_CONSTEXPR bool operator()(const _Tp& __x, const _Tp& __y) const { return __x != __y; } }; /// One of the @link comparison_functors comparison functors@endlink. template<typename _Tp> struct greater : public binary_function<_Tp, _Tp, bool> { _GLIBCXX14_CONSTEXPR bool operator()(const _Tp& __x, const _Tp& __y) const { return __x > __y; } }; /// One of the @link comparison_functors comparison functors@endlink. template<typename _Tp> struct less : public binary_function<_Tp, _Tp, bool> { _GLIBCXX14_CONSTEXPR bool operator()(const _Tp& __x, const _Tp& __y) const { return __x < __y; } }; /// One of the @link comparison_functors comparison functors@endlink. template<typename _Tp> struct greater_equal : public binary_function<_Tp, _Tp, bool> { _GLIBCXX14_CONSTEXPR bool operator()(const _Tp& __x, const _Tp& __y) const { return __x >= __y; } }; /// One of the @link comparison_functors comparison functors@endlink. template<typename _Tp> struct less_equal : public binary_function<_Tp, _Tp, bool> { _GLIBCXX14_CONSTEXPR bool operator()(const _Tp& __x, const _Tp& __y) const { return __x <= __y; } }; // Partial specialization of std::greater for pointers. template<typename _Tp> struct greater<_Tp*> : public binary_function<_Tp*, _Tp*, bool> { _GLIBCXX14_CONSTEXPR bool operator()(_Tp* __x, _Tp* __y) const _GLIBCXX_NOTHROW { if (__builtin_constant_p (__x > __y)) return __x > __y; return (__UINTPTR_TYPE__)__x > (__UINTPTR_TYPE__)__y; } }; // Partial specialization of std::less for pointers. template<typename _Tp> struct less<_Tp*> : public binary_function<_Tp*, _Tp*, bool> { _GLIBCXX14_CONSTEXPR bool operator()(_Tp* __x, _Tp* __y) const _GLIBCXX_NOTHROW { if (__builtin_constant_p (__x < __y)) return __x < __y; return (__UINTPTR_TYPE__)__x < (__UINTPTR_TYPE__)__y; } }; // Partial specialization of std::greater_equal for pointers. template<typename _Tp> struct greater_equal<_Tp*> : public binary_function<_Tp*, _Tp*, bool> { _GLIBCXX14_CONSTEXPR bool operator()(_Tp* __x, _Tp* __y) const _GLIBCXX_NOTHROW { if (__builtin_constant_p (__x >= __y)) return __x >= __y; return (__UINTPTR_TYPE__)__x >= (__UINTPTR_TYPE__)__y; } }; // Partial specialization of std::less_equal for pointers. template<typename _Tp> struct less_equal<_Tp*> : public binary_function<_Tp*, _Tp*, bool> { _GLIBCXX14_CONSTEXPR bool operator()(_Tp* __x, _Tp* __y) const _GLIBCXX_NOTHROW { if (__builtin_constant_p (__x <= __y)) return __x <= __y; return (__UINTPTR_TYPE__)__x <= (__UINTPTR_TYPE__)__y; } }; #if __cplusplus >= 201402L /// One of the @link comparison_functors comparison functors@endlink. template<> struct equal_to<void> { template <typename _Tp, typename _Up> constexpr auto operator()(_Tp&& __t, _Up&& __u) const noexcept(noexcept(std::forward<_Tp>(__t) == std::forward<_Up>(__u))) -> decltype(std::forward<_Tp>(__t) == std::forward<_Up>(__u)) { return std::forward<_Tp>(__t) == std::forward<_Up>(__u); } typedef __is_transparent is_transparent; }; /// One of the @link comparison_functors comparison functors@endlink. template<> struct not_equal_to<void> { template <typename _Tp, typename _Up> constexpr auto operator()(_Tp&& __t, _Up&& __u) const noexcept(noexcept(std::forward<_Tp>(__t) != std::forward<_Up>(__u))) -> decltype(std::forward<_Tp>(__t) != std::forward<_Up>(__u)) { return std::forward<_Tp>(__t) != std::forward<_Up>(__u); } typedef __is_transparent is_transparent; }; /// One of the @link comparison_functors comparison functors@endlink. template<> struct greater<void> { template <typename _Tp, typename _Up> constexpr auto operator()(_Tp&& __t, _Up&& __u) const noexcept(noexcept(std::forward<_Tp>(__t) > std::forward<_Up>(__u))) -> decltype(std::forward<_Tp>(__t) > std::forward<_Up>(__u)) { return _S_cmp(std::forward<_Tp>(__t), std::forward<_Up>(__u), __ptr_cmp<_Tp, _Up>{}); } template<typename _Tp, typename _Up> constexpr bool operator()(_Tp* __t, _Up* __u) const noexcept { return greater<common_type_t<_Tp*, _Up*>>{}(__t, __u); } typedef __is_transparent is_transparent; private: template <typename _Tp, typename _Up> static constexpr decltype(auto) _S_cmp(_Tp&& __t, _Up&& __u, false_type) { return std::forward<_Tp>(__t) > std::forward<_Up>(__u); } template <typename _Tp, typename _Up> static constexpr bool _S_cmp(_Tp&& __t, _Up&& __u, true_type) noexcept { return greater<const volatile void*>{}( static_cast<const volatile void*>(std::forward<_Tp>(__t)), static_cast<const volatile void*>(std::forward<_Up>(__u))); } // True if there is no viable operator> member function. template<typename _Tp, typename _Up, typename = void> struct __not_overloaded2 : true_type { }; // False if we can call T.operator>(U) template<typename _Tp, typename _Up> struct __not_overloaded2<_Tp, _Up, __void_t< decltype(std::declval<_Tp>().operator>(std::declval<_Up>()))>> : false_type { }; // True if there is no overloaded operator> for these operands. template<typename _Tp, typename _Up, typename = void> struct __not_overloaded : __not_overloaded2<_Tp, _Up> { }; // False if we can call operator>(T,U) template<typename _Tp, typename _Up> struct __not_overloaded<_Tp, _Up, __void_t< decltype(operator>(std::declval<_Tp>(), std::declval<_Up>()))>> : false_type { }; template<typename _Tp, typename _Up> using __ptr_cmp = __and_<__not_overloaded<_Tp, _Up>, is_convertible<_Tp, const volatile void*>, is_convertible<_Up, const volatile void*>>; }; /// One of the @link comparison_functors comparison functors@endlink. template<> struct less<void> { template <typename _Tp, typename _Up> constexpr auto operator()(_Tp&& __t, _Up&& __u) const noexcept(noexcept(std::forward<_Tp>(__t) < std::forward<_Up>(__u))) -> decltype(std::forward<_Tp>(__t) < std::forward<_Up>(__u)) { return _S_cmp(std::forward<_Tp>(__t), std::forward<_Up>(__u), __ptr_cmp<_Tp, _Up>{}); } template<typename _Tp, typename _Up> constexpr bool operator()(_Tp* __t, _Up* __u) const noexcept { return less<common_type_t<_Tp*, _Up*>>{}(__t, __u); } typedef __is_transparent is_transparent; private: template <typename _Tp, typename _Up> static constexpr decltype(auto) _S_cmp(_Tp&& __t, _Up&& __u, false_type) { return std::forward<_Tp>(__t) < std::forward<_Up>(__u); } template <typename _Tp, typename _Up> static constexpr bool _S_cmp(_Tp&& __t, _Up&& __u, true_type) noexcept { return less<const volatile void*>{}( static_cast<const volatile void*>(std::forward<_Tp>(__t)), static_cast<const volatile void*>(std::forward<_Up>(__u))); } // True if there is no viable operator< member function. template<typename _Tp, typename _Up, typename = void> struct __not_overloaded2 : true_type { }; // False if we can call T.operator<(U) template<typename _Tp, typename _Up> struct __not_overloaded2<_Tp, _Up, __void_t< decltype(std::declval<_Tp>().operator<(std::declval<_Up>()))>> : false_type { }; // True if there is no overloaded operator< for these operands. template<typename _Tp, typename _Up, typename = void> struct __not_overloaded : __not_overloaded2<_Tp, _Up> { }; // False if we can call operator<(T,U) template<typename _Tp, typename _Up> struct __not_overloaded<_Tp, _Up, __void_t< decltype(operator<(std::declval<_Tp>(), std::declval<_Up>()))>> : false_type { }; template<typename _Tp, typename _Up> using __ptr_cmp = __and_<__not_overloaded<_Tp, _Up>, is_convertible<_Tp, const volatile void*>, is_convertible<_Up, const volatile void*>>; }; /// One of the @link comparison_functors comparison functors@endlink. template<> struct greater_equal<void> { template <typename _Tp, typename _Up> constexpr auto operator()(_Tp&& __t, _Up&& __u) const noexcept(noexcept(std::forward<_Tp>(__t) >= std::forward<_Up>(__u))) -> decltype(std::forward<_Tp>(__t) >= std::forward<_Up>(__u)) { return _S_cmp(std::forward<_Tp>(__t), std::forward<_Up>(__u), __ptr_cmp<_Tp, _Up>{}); } template<typename _Tp, typename _Up> constexpr bool operator()(_Tp* __t, _Up* __u) const noexcept { return greater_equal<common_type_t<_Tp*, _Up*>>{}(__t, __u); } typedef __is_transparent is_transparent; private: template <typename _Tp, typename _Up> static constexpr decltype(auto) _S_cmp(_Tp&& __t, _Up&& __u, false_type) { return std::forward<_Tp>(__t) >= std::forward<_Up>(__u); } template <typename _Tp, typename _Up> static constexpr bool _S_cmp(_Tp&& __t, _Up&& __u, true_type) noexcept { return greater_equal<const volatile void*>{}( static_cast<const volatile void*>(std::forward<_Tp>(__t)), static_cast<const volatile void*>(std::forward<_Up>(__u))); } // True if there is no viable operator>= member function. template<typename _Tp, typename _Up, typename = void> struct __not_overloaded2 : true_type { }; // False if we can call T.operator>=(U) template<typename _Tp, typename _Up> struct __not_overloaded2<_Tp, _Up, __void_t< decltype(std::declval<_Tp>().operator>=(std::declval<_Up>()))>> : false_type { }; // True if there is no overloaded operator>= for these operands. template<typename _Tp, typename _Up, typename = void> struct __not_overloaded : __not_overloaded2<_Tp, _Up> { }; // False if we can call operator>=(T,U) template<typename _Tp, typename _Up> struct __not_overloaded<_Tp, _Up, __void_t< decltype(operator>=(std::declval<_Tp>(), std::declval<_Up>()))>> : false_type { }; template<typename _Tp, typename _Up> using __ptr_cmp = __and_<__not_overloaded<_Tp, _Up>, is_convertible<_Tp, const volatile void*>, is_convertible<_Up, const volatile void*>>; }; /// One of the @link comparison_functors comparison functors@endlink. template<> struct less_equal<void> { template <typename _Tp, typename _Up> constexpr auto operator()(_Tp&& __t, _Up&& __u) const noexcept(noexcept(std::forward<_Tp>(__t) <= std::forward<_Up>(__u))) -> decltype(std::forward<_Tp>(__t) <= std::forward<_Up>(__u)) { return _S_cmp(std::forward<_Tp>(__t), std::forward<_Up>(__u), __ptr_cmp<_Tp, _Up>{}); } template<typename _Tp, typename _Up> constexpr bool operator()(_Tp* __t, _Up* __u) const noexcept { return less_equal<common_type_t<_Tp*, _Up*>>{}(__t, __u); } typedef __is_transparent is_transparent; private: template <typename _Tp, typename _Up> static constexpr decltype(auto) _S_cmp(_Tp&& __t, _Up&& __u, false_type) { return std::forward<_Tp>(__t) <= std::forward<_Up>(__u); } template <typename _Tp, typename _Up> static constexpr bool _S_cmp(_Tp&& __t, _Up&& __u, true_type) noexcept { return less_equal<const volatile void*>{}( static_cast<const volatile void*>(std::forward<_Tp>(__t)), static_cast<const volatile void*>(std::forward<_Up>(__u))); } // True if there is no viable operator<= member function. template<typename _Tp, typename _Up, typename = void> struct __not_overloaded2 : true_type { }; // False if we can call T.operator<=(U) template<typename _Tp, typename _Up> struct __not_overloaded2<_Tp, _Up, __void_t< decltype(std::declval<_Tp>().operator<=(std::declval<_Up>()))>> : false_type { }; // True if there is no overloaded operator<= for these operands. template<typename _Tp, typename _Up, typename = void> struct __not_overloaded : __not_overloaded2<_Tp, _Up> { }; // False if we can call operator<=(T,U) template<typename _Tp, typename _Up> struct __not_overloaded<_Tp, _Up, __void_t< decltype(operator<=(std::declval<_Tp>(), std::declval<_Up>()))>> : false_type { }; template<typename _Tp, typename _Up> using __ptr_cmp = __and_<__not_overloaded<_Tp, _Up>, is_convertible<_Tp, const volatile void*>, is_convertible<_Up, const volatile void*>>; }; #endif // C++14 /** @} */ // 20.3.4 logical operations /** @defgroup logical_functors Boolean Operations Classes * @ingroup functors * * Here are wrapper functors for Boolean operations: @c &&, @c ||, * and @c !. * * @{ */ #if __cplusplus > 201103L template<typename _Tp = void> struct logical_and; template<typename _Tp = void> struct logical_or; template<typename _Tp = void> struct logical_not; #endif /// One of the @link logical_functors Boolean operations functors@endlink. template<typename _Tp> struct logical_and : public binary_function<_Tp, _Tp, bool> { _GLIBCXX14_CONSTEXPR bool operator()(const _Tp& __x, const _Tp& __y) const { return __x && __y; } }; /// One of the @link logical_functors Boolean operations functors@endlink. template<typename _Tp> struct logical_or : public binary_function<_Tp, _Tp, bool> { _GLIBCXX14_CONSTEXPR bool operator()(const _Tp& __x, const _Tp& __y) const { return __x || __y; } }; /// One of the @link logical_functors Boolean operations functors@endlink. template<typename _Tp> struct logical_not : public unary_function<_Tp, bool> { _GLIBCXX14_CONSTEXPR bool operator()(const _Tp& __x) const { return !__x; } }; #if __cplusplus > 201103L /// One of the @link logical_functors Boolean operations functors@endlink. template<> struct logical_and<void> { template <typename _Tp, typename _Up> _GLIBCXX14_CONSTEXPR auto operator()(_Tp&& __t, _Up&& __u) const noexcept(noexcept(std::forward<_Tp>(__t) && std::forward<_Up>(__u))) -> decltype(std::forward<_Tp>(__t) && std::forward<_Up>(__u)) { return std::forward<_Tp>(__t) && std::forward<_Up>(__u); } typedef __is_transparent is_transparent; }; /// One of the @link logical_functors Boolean operations functors@endlink. template<> struct logical_or<void> { template <typename _Tp, typename _Up> _GLIBCXX14_CONSTEXPR auto operator()(_Tp&& __t, _Up&& __u) const noexcept(noexcept(std::forward<_Tp>(__t) || std::forward<_Up>(__u))) -> decltype(std::forward<_Tp>(__t) || std::forward<_Up>(__u)) { return std::forward<_Tp>(__t) || std::forward<_Up>(__u); } typedef __is_transparent is_transparent; }; /// One of the @link logical_functors Boolean operations functors@endlink. template<> struct logical_not<void> { template <typename _Tp> _GLIBCXX14_CONSTEXPR auto operator()(_Tp&& __t) const noexcept(noexcept(!std::forward<_Tp>(__t))) -> decltype(!std::forward<_Tp>(__t)) { return !std::forward<_Tp>(__t); } typedef __is_transparent is_transparent; }; #endif /** @} */ #if __cplusplus > 201103L template<typename _Tp = void> struct bit_and; template<typename _Tp = void> struct bit_or; template<typename _Tp = void> struct bit_xor; template<typename _Tp = void> struct bit_not; #endif // _GLIBCXX_RESOLVE_LIB_DEFECTS // DR 660. Missing Bitwise Operations. template<typename _Tp> struct bit_and : public binary_function<_Tp, _Tp, _Tp> { _GLIBCXX14_CONSTEXPR _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x & __y; } }; template<typename _Tp> struct bit_or : public binary_function<_Tp, _Tp, _Tp> { _GLIBCXX14_CONSTEXPR _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x | __y; } }; template<typename _Tp> struct bit_xor : public binary_function<_Tp, _Tp, _Tp> { _GLIBCXX14_CONSTEXPR _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x ^ __y; } }; template<typename _Tp> struct bit_not : public unary_function<_Tp, _Tp> { _GLIBCXX14_CONSTEXPR _Tp operator()(const _Tp& __x) const { return ~__x; } }; #if __cplusplus > 201103L template <> struct bit_and<void> { template <typename _Tp, typename _Up> _GLIBCXX14_CONSTEXPR auto operator()(_Tp&& __t, _Up&& __u) const noexcept(noexcept(std::forward<_Tp>(__t) & std::forward<_Up>(__u))) -> decltype(std::forward<_Tp>(__t) & std::forward<_Up>(__u)) { return std::forward<_Tp>(__t) & std::forward<_Up>(__u); } typedef __is_transparent is_transparent; }; template <> struct bit_or<void> { template <typename _Tp, typename _Up> _GLIBCXX14_CONSTEXPR auto operator()(_Tp&& __t, _Up&& __u) const noexcept(noexcept(std::forward<_Tp>(__t) | std::forward<_Up>(__u))) -> decltype(std::forward<_Tp>(__t) | std::forward<_Up>(__u)) { return std::forward<_Tp>(__t) | std::forward<_Up>(__u); } typedef __is_transparent is_transparent; }; template <> struct bit_xor<void> { template <typename _Tp, typename _Up> _GLIBCXX14_CONSTEXPR auto operator()(_Tp&& __t, _Up&& __u) const noexcept(noexcept(std::forward<_Tp>(__t) ^ std::forward<_Up>(__u))) -> decltype(std::forward<_Tp>(__t) ^ std::forward<_Up>(__u)) { return std::forward<_Tp>(__t) ^ std::forward<_Up>(__u); } typedef __is_transparent is_transparent; }; template <> struct bit_not<void> { template <typename _Tp> _GLIBCXX14_CONSTEXPR auto operator()(_Tp&& __t) const noexcept(noexcept(~std::forward<_Tp>(__t))) -> decltype(~std::forward<_Tp>(__t)) { return ~std::forward<_Tp>(__t); } typedef __is_transparent is_transparent; }; #endif // 20.3.5 negators /** @defgroup negators Negators * @ingroup functors * * The functions @c not1 and @c not2 each take a predicate functor * and return an instance of @c unary_negate or * @c binary_negate, respectively. These classes are functors whose * @c operator() performs the stored predicate function and then returns * the negation of the result. * * For example, given a vector of integers and a trivial predicate, * \code * struct IntGreaterThanThree * : public std::unary_function<int, bool> * { * bool operator() (int x) { return x > 3; } * }; * * std::find_if (v.begin(), v.end(), not1(IntGreaterThanThree())); * \endcode * The call to @c find_if will locate the first index (i) of @c v for which * <code>!(v[i] > 3)</code> is true. * * The not1/unary_negate combination works on predicates taking a single * argument. The not2/binary_negate combination works on predicates which * take two arguments. * * @{ */ /// One of the @link negators negation functors@endlink. template<typename _Predicate> class unary_negate : public unary_function<typename _Predicate::argument_type, bool> { protected: _Predicate _M_pred; public: _GLIBCXX14_CONSTEXPR explicit unary_negate(const _Predicate& __x) : _M_pred(__x) { } _GLIBCXX14_CONSTEXPR bool operator()(const typename _Predicate::argument_type& __x) const { return !_M_pred(__x); } }; /// One of the @link negators negation functors@endlink. template<typename _Predicate> _GLIBCXX14_CONSTEXPR inline unary_negate<_Predicate> not1(const _Predicate& __pred) { return unary_negate<_Predicate>(__pred); } /// One of the @link negators negation functors@endlink. template<typename _Predicate> class binary_negate : public binary_function<typename _Predicate::first_argument_type, typename _Predicate::second_argument_type, bool> { protected: _Predicate _M_pred; public: _GLIBCXX14_CONSTEXPR explicit binary_negate(const _Predicate& __x) : _M_pred(__x) { } _GLIBCXX14_CONSTEXPR bool operator()(const typename _Predicate::first_argument_type& __x, const typename _Predicate::second_argument_type& __y) const { return !_M_pred(__x, __y); } }; /// One of the @link negators negation functors@endlink. template<typename _Predicate> _GLIBCXX14_CONSTEXPR inline binary_negate<_Predicate> not2(const _Predicate& __pred) { return binary_negate<_Predicate>(__pred); } /** @} */ // 20.3.7 adaptors pointers functions /** @defgroup pointer_adaptors Adaptors for pointers to functions * @ingroup functors * * The advantage of function objects over pointers to functions is that * the objects in the standard library declare nested typedefs describing * their argument and result types with uniform names (e.g., @c result_type * from the base classes @c unary_function and @c binary_function). * Sometimes those typedefs are required, not just optional. * * Adaptors are provided to turn pointers to unary (single-argument) and * binary (double-argument) functions into function objects. The * long-winded functor @c pointer_to_unary_function is constructed with a * function pointer @c f, and its @c operator() called with argument @c x * returns @c f(x). The functor @c pointer_to_binary_function does the same * thing, but with a double-argument @c f and @c operator(). * * The function @c ptr_fun takes a pointer-to-function @c f and constructs * an instance of the appropriate functor. * * @{ */ /// One of the @link pointer_adaptors adaptors for function pointers@endlink. template<typename _Arg, typename _Result> class pointer_to_unary_function : public unary_function<_Arg, _Result> { protected: _Result (*_M_ptr)(_Arg); public: pointer_to_unary_function() { } explicit pointer_to_unary_function(_Result (*__x)(_Arg)) : _M_ptr(__x) { } _Result operator()(_Arg __x) const { return _M_ptr(__x); } }; /// One of the @link pointer_adaptors adaptors for function pointers@endlink. template<typename _Arg, typename _Result> inline pointer_to_unary_function<_Arg, _Result> ptr_fun(_Result (*__x)(_Arg)) { return pointer_to_unary_function<_Arg, _Result>(__x); } /// One of the @link pointer_adaptors adaptors for function pointers@endlink. template<typename _Arg1, typename _Arg2, typename _Result> class pointer_to_binary_function : public binary_function<_Arg1, _Arg2, _Result> { protected: _Result (*_M_ptr)(_Arg1, _Arg2); public: pointer_to_binary_function() { } explicit pointer_to_binary_function(_Result (*__x)(_Arg1, _Arg2)) : _M_ptr(__x) { } _Result operator()(_Arg1 __x, _Arg2 __y) const { return _M_ptr(__x, __y); } }; /// One of the @link pointer_adaptors adaptors for function pointers@endlink. template<typename _Arg1, typename _Arg2, typename _Result> inline pointer_to_binary_function<_Arg1, _Arg2, _Result> ptr_fun(_Result (*__x)(_Arg1, _Arg2)) { return pointer_to_binary_function<_Arg1, _Arg2, _Result>(__x); } /** @} */ template<typename _Tp> struct _Identity : public unary_function<_Tp, _Tp> { _Tp& operator()(_Tp& __x) const { return __x; } const _Tp& operator()(const _Tp& __x) const { return __x; } }; // Partial specialization, avoids confusing errors in e.g. std::set<const T>. template<typename _Tp> struct _Identity<const _Tp> : _Identity<_Tp> { }; template<typename _Pair> struct _Select1st : public unary_function<_Pair, typename _Pair::first_type> { typename _Pair::first_type& operator()(_Pair& __x) const { return __x.first; } const typename _Pair::first_type& operator()(const _Pair& __x) const { return __x.first; } #if __cplusplus >= 201103L template<typename _Pair2> typename _Pair2::first_type& operator()(_Pair2& __x) const { return __x.first; } template<typename _Pair2> const typename _Pair2::first_type& operator()(const _Pair2& __x) const { return __x.first; } #endif }; template<typename _Pair> struct _Select2nd : public unary_function<_Pair, typename _Pair::second_type> { typename _Pair::second_type& operator()(_Pair& __x) const { return __x.second; } const typename _Pair::second_type& operator()(const _Pair& __x) const { return __x.second; } }; // 20.3.8 adaptors pointers members /** @defgroup memory_adaptors Adaptors for pointers to members * @ingroup functors * * There are a total of 8 = 2^3 function objects in this family. * (1) Member functions taking no arguments vs member functions taking * one argument. * (2) Call through pointer vs call through reference. * (3) Const vs non-const member function. * * All of this complexity is in the function objects themselves. You can * ignore it by using the helper function mem_fun and mem_fun_ref, * which create whichever type of adaptor is appropriate. * * @{ */ /// One of the @link memory_adaptors adaptors for member /// pointers@endlink. template<typename _Ret, typename _Tp> class mem_fun_t : public unary_function<_Tp*, _Ret> { public: explicit mem_fun_t(_Ret (_Tp::*__pf)()) : _M_f(__pf) { } _Ret operator()(_Tp* __p) const { return (__p->*_M_f)(); } private: _Ret (_Tp::*_M_f)(); }; /// One of the @link memory_adaptors adaptors for member /// pointers@endlink. template<typename _Ret, typename _Tp> class const_mem_fun_t : public unary_function<const _Tp*, _Ret> { public: explicit const_mem_fun_t(_Ret (_Tp::*__pf)() const) : _M_f(__pf) { } _Ret operator()(const _Tp* __p) const { return (__p->*_M_f)(); } private: _Ret (_Tp::*_M_f)() const; }; /// One of the @link memory_adaptors adaptors for member /// pointers@endlink. template<typename _Ret, typename _Tp> class mem_fun_ref_t : public unary_function<_Tp, _Ret> { public: explicit mem_fun_ref_t(_Ret (_Tp::*__pf)()) : _M_f(__pf) { } _Ret operator()(_Tp& __r) const { return (__r.*_M_f)(); } private: _Ret (_Tp::*_M_f)(); }; /// One of the @link memory_adaptors adaptors for member /// pointers@endlink. template<typename _Ret, typename _Tp> class const_mem_fun_ref_t : public unary_function<_Tp, _Ret> { public: explicit const_mem_fun_ref_t(_Ret (_Tp::*__pf)() const) : _M_f(__pf) { } _Ret operator()(const _Tp& __r) const { return (__r.*_M_f)(); } private: _Ret (_Tp::*_M_f)() const; }; /// One of the @link memory_adaptors adaptors for member /// pointers@endlink. template<typename _Ret, typename _Tp, typename _Arg> class mem_fun1_t : public binary_function<_Tp*, _Arg, _Ret> { public: explicit mem_fun1_t(_Ret (_Tp::*__pf)(_Arg)) : _M_f(__pf) { } _Ret operator()(_Tp* __p, _Arg __x) const { return (__p->*_M_f)(__x); } private: _Ret (_Tp::*_M_f)(_Arg); }; /// One of the @link memory_adaptors adaptors for member /// pointers@endlink. template<typename _Ret, typename _Tp, typename _Arg> class const_mem_fun1_t : public binary_function<const _Tp*, _Arg, _Ret> { public: explicit const_mem_fun1_t(_Ret (_Tp::*__pf)(_Arg) const) : _M_f(__pf) { } _Ret operator()(const _Tp* __p, _Arg __x) const { return (__p->*_M_f)(__x); } private: _Ret (_Tp::*_M_f)(_Arg) const; }; /// One of the @link memory_adaptors adaptors for member /// pointers@endlink. template<typename _Ret, typename _Tp, typename _Arg> class mem_fun1_ref_t : public binary_function<_Tp, _Arg, _Ret> { public: explicit mem_fun1_ref_t(_Ret (_Tp::*__pf)(_Arg)) : _M_f(__pf) { } _Ret operator()(_Tp& __r, _Arg __x) const { return (__r.*_M_f)(__x); } private: _Ret (_Tp::*_M_f)(_Arg); }; /// One of the @link memory_adaptors adaptors for member /// pointers@endlink. template<typename _Ret, typename _Tp, typename _Arg> class const_mem_fun1_ref_t : public binary_function<_Tp, _Arg, _Ret> { public: explicit const_mem_fun1_ref_t(_Ret (_Tp::*__pf)(_Arg) const) : _M_f(__pf) { } _Ret operator()(const _Tp& __r, _Arg __x) const { return (__r.*_M_f)(__x); } private: _Ret (_Tp::*_M_f)(_Arg) const; }; // Mem_fun adaptor helper functions. There are only two: // mem_fun and mem_fun_ref. template<typename _Ret, typename _Tp> inline mem_fun_t<_Ret, _Tp> mem_fun(_Ret (_Tp::*__f)()) { return mem_fun_t<_Ret, _Tp>(__f); } template<typename _Ret, typename _Tp> inline const_mem_fun_t<_Ret, _Tp> mem_fun(_Ret (_Tp::*__f)() const) { return const_mem_fun_t<_Ret, _Tp>(__f); } template<typename _Ret, typename _Tp> inline mem_fun_ref_t<_Ret, _Tp> mem_fun_ref(_Ret (_Tp::*__f)()) { return mem_fun_ref_t<_Ret, _Tp>(__f); } template<typename _Ret, typename _Tp> inline const_mem_fun_ref_t<_Ret, _Tp> mem_fun_ref(_Ret (_Tp::*__f)() const) { return const_mem_fun_ref_t<_Ret, _Tp>(__f); } template<typename _Ret, typename _Tp, typename _Arg> inline mem_fun1_t<_Ret, _Tp, _Arg> mem_fun(_Ret (_Tp::*__f)(_Arg)) { return mem_fun1_t<_Ret, _Tp, _Arg>(__f); } template<typename _Ret, typename _Tp, typename _Arg> inline const_mem_fun1_t<_Ret, _Tp, _Arg> mem_fun(_Ret (_Tp::*__f)(_Arg) const) { return const_mem_fun1_t<_Ret, _Tp, _Arg>(__f); } template<typename _Ret, typename _Tp, typename _Arg> inline mem_fun1_ref_t<_Ret, _Tp, _Arg> mem_fun_ref(_Ret (_Tp::*__f)(_Arg)) { return mem_fun1_ref_t<_Ret, _Tp, _Arg>(__f); } template<typename _Ret, typename _Tp, typename _Arg> inline const_mem_fun1_ref_t<_Ret, _Tp, _Arg> mem_fun_ref(_Ret (_Tp::*__f)(_Arg) const) { return const_mem_fun1_ref_t<_Ret, _Tp, _Arg>(__f); } /** @} */ _GLIBCXX_END_NAMESPACE_VERSION } // namespace #if (__cplusplus < 201103L) || _GLIBCXX_USE_DEPRECATED # include <backward/binders.h> #endif #endif /* _STL_FUNCTION_H */
Upload File
Create Folder