X7ROOT File Manager
Current Path:
/opt/hc_python/lib/python3.12/site-packages/pydantic/v1
opt
/
hc_python
/
lib
/
python3.12
/
site-packages
/
pydantic
/
v1
/
📁
..
📄
__init__.py
(2.88 KB)
📁
__pycache__
📄
_hypothesis_plugin.py
(14.5 KB)
📄
annotated_types.py
(3.08 KB)
📄
class_validators.py
(14.33 KB)
📄
color.py
(16.45 KB)
📄
config.py
(6.38 KB)
📄
dataclasses.py
(17.75 KB)
📄
datetime_parse.py
(7.54 KB)
📄
decorator.py
(10.1 KB)
📄
env_settings.py
(13.77 KB)
📄
error_wrappers.py
(5.07 KB)
📄
errors.py
(17.31 KB)
📄
fields.py
(49.46 KB)
📄
generics.py
(17.45 KB)
📄
json.py
(3.31 KB)
📄
main.py
(43.5 KB)
📄
mypy.py
(37.87 KB)
📄
networks.py
(21.61 KB)
📄
parse.py
(1.78 KB)
📄
py.typed
(0 B)
📄
schema.py
(46.64 KB)
📄
tools.py
(2.81 KB)
📄
types.py
(34.62 KB)
📄
typing.py
(18.93 KB)
📄
utils.py
(25.31 KB)
📄
validators.py
(21.48 KB)
📄
version.py
(1.01 KB)
Editing: annotated_types.py
import sys from typing import TYPE_CHECKING, Any, Dict, FrozenSet, NamedTuple, Type from pydantic.v1.fields import Required from pydantic.v1.main import BaseModel, create_model from pydantic.v1.typing import is_typeddict, is_typeddict_special if TYPE_CHECKING: from typing_extensions import TypedDict if sys.version_info < (3, 11): def is_legacy_typeddict(typeddict_cls: Type['TypedDict']) -> bool: # type: ignore[valid-type] return is_typeddict(typeddict_cls) and type(typeddict_cls).__module__ == 'typing' else: def is_legacy_typeddict(_: Any) -> Any: return False def create_model_from_typeddict( # Mypy bug: `Type[TypedDict]` is resolved as `Any` https://github.com/python/mypy/issues/11030 typeddict_cls: Type['TypedDict'], # type: ignore[valid-type] **kwargs: Any, ) -> Type['BaseModel']: """ Create a `BaseModel` based on the fields of a `TypedDict`. Since `typing.TypedDict` in Python 3.8 does not store runtime information about optional keys, we raise an error if this happens (see https://bugs.python.org/issue38834). """ field_definitions: Dict[str, Any] # Best case scenario: with python 3.9+ or when `TypedDict` is imported from `typing_extensions` if not hasattr(typeddict_cls, '__required_keys__'): raise TypeError( 'You should use `typing_extensions.TypedDict` instead of `typing.TypedDict` with Python < 3.9.2. ' 'Without it, there is no way to differentiate required and optional fields when subclassed.' ) if is_legacy_typeddict(typeddict_cls) and any( is_typeddict_special(t) for t in typeddict_cls.__annotations__.values() ): raise TypeError( 'You should use `typing_extensions.TypedDict` instead of `typing.TypedDict` with Python < 3.11. ' 'Without it, there is no way to reflect Required/NotRequired keys.' ) required_keys: FrozenSet[str] = typeddict_cls.__required_keys__ # type: ignore[attr-defined] field_definitions = { field_name: (field_type, Required if field_name in required_keys else None) for field_name, field_type in typeddict_cls.__annotations__.items() } return create_model(typeddict_cls.__name__, **kwargs, **field_definitions) def create_model_from_namedtuple(namedtuple_cls: Type['NamedTuple'], **kwargs: Any) -> Type['BaseModel']: """ Create a `BaseModel` based on the fields of a named tuple. A named tuple can be created with `typing.NamedTuple` and declared annotations but also with `collections.namedtuple`, in this case we consider all fields to have type `Any`. """ # With python 3.10+, `__annotations__` always exists but can be empty hence the `getattr... or...` logic namedtuple_annotations: Dict[str, Type[Any]] = getattr(namedtuple_cls, '__annotations__', None) or { k: Any for k in namedtuple_cls._fields } field_definitions: Dict[str, Any] = { field_name: (field_type, Required) for field_name, field_type in namedtuple_annotations.items() } return create_model(namedtuple_cls.__name__, **kwargs, **field_definitions)
Upload File
Create Folder